

# 1535nm Eye-safe Laser Ranging Module

1

### PRODUCT DESCRIPTION

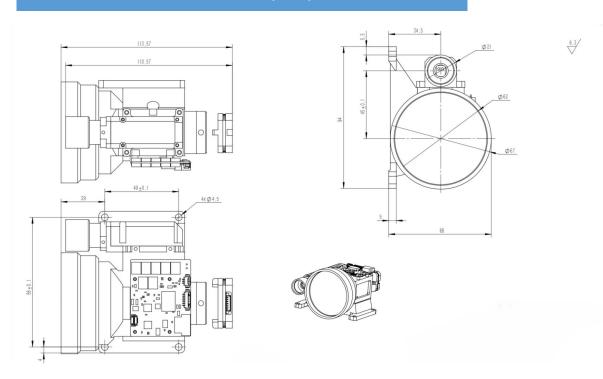
The LRF1830C laser ranging module is a long-range laser rangefinder based on the 1535nm glass laser independently developed by Erdi. It adopts the single-pulse TOF (Time of Flight) ranging method, and the range can reach ≥18km for an objective of 4m×6m. It is composed of a laser, a transmitting optical system, a receiving optical system, and a control circuit board. Through the RS422 serial port and embedded software, it is convenient for users to conduct secondary development. Its main functions include single ranging and continuous ranging, three-target ranging, front and rear target indication self-check function (including: current APD temperature, high voltage value, internal voltage, and blind zone value), and standby wake-up function.




2

## TECHNICAL SPECIFICATIONS

| PROJECT                                                   | PERFORMANCE INDICATORS |  |
|-----------------------------------------------------------|------------------------|--|
| Model                                                     | LRF1830C               |  |
| Laser Wavelength                                          | 1.54μm±0.02μm          |  |
| Eye- safety                                               | Class I                |  |
| Divergence Angle                                          | ≤0.3 mrad              |  |
| Laser Energy                                              | ≥500 µJ                |  |
| Launch Lens Diameter                                      | Φ18 mm                 |  |
| Receiver Lens Diameter                                    | $\Phi 60~\mathrm{mm}$  |  |
| Measuring Range<br>(Reflectance 30%; visibility ≥ 18 km.) | 4m×6m Objective ≥18 km |  |
| Minimum Range                                             | ≤50 m                  |  |
| Ranging Frequency                                         | 0.5Hz ~10Hz            |  |
| Number of multi-target detections                         | RS422                  |  |
| Ranging Accuracy                                          | ±2 m                   |  |
| Range Resolution                                          | ≤30 m                  |  |
| Precision Rate                                            | ≥98%                   |  |
| False Alarm Rate                                          | ≤1%                    |  |




| Pin-in-lead package model | Ј30Ј                                   |
|---------------------------|----------------------------------------|
| Supply Voltage            | DC12 V                                 |
| Standby power consumption | ≤1.2W                                  |
| Average power consumption | ≤2 W                                   |
| Peak Power Consumption    | ≤3W                                    |
| Weight                    | ≤400g                                  |
| Dimension (L×W×H)         | 125mm×100mm×70mm                       |
| Operating Temperature     | -40 ~ +70 °C                           |
| Storage Temperature       | -55 ~ +75 °C                           |
| Impact Resistance         | Meet the MIL-STD-810G testing standard |
| Vibration Resistance      | Meet the MIL-STD-810G testing standard |



Visibility (km)

# 3 OUTLINE DIMENSION(mm)





# 4

#### PIN INTERFACE

Electrical connector model: J30J; The corresponding plug and cable shall be provided by Party B. The detailed definition of the electrical interface is shown in the following table:

#### Interface Definition

| Pin | Definition | Function               | Remarks                                    |
|-----|------------|------------------------|--------------------------------------------|
| 1   | GND        | Serial Port Ground     |                                            |
| 2   | GND        | 12V Input Negative     |                                            |
| 3   | GND        | 12V Input Negative     |                                            |
| 4   | VCC 5V     | 12V Input Positive     |                                            |
| 5   | VCC 5V     | 12V Input Positive     |                                            |
| 6   | RS422 RX+  | Serial Port Receive +  | From the upper computer to the rangefinder |
| 7   | RS422 RX-  | Serial Port Receive -  | From the upper computer to the rangefinder |
| 8   | RS422 TX-  | Serial Port Transmit - | From the rangefinder to the upper computer |
| 9   | RS422 TX+  | Serial Port Transmit + | From the rangefinder to the upper computer |

# 5

### **EMBEDDED SOFTWARE**

Communication format: RS - 422 communication, baud rate of 115200 bps;

Data format: 8 - bit data, one start bit, one stop bit, no parity check. The data consists of a header byte, a command part, data length, a parameter part, and a check byte.

Communication mode: The master control and the rangefinder adopt a master - slave communication mode. The master control sends control commands to the rangefinder, and the rangefinder receives and executes the commands. In the ranging state, the rangefinder sends back its data and status to the upper computer according to the ranging cycle. The communication format and command content are shown in the following table.

#### a) Sent by the master control

The format of the sent message is as follows:

STX0 CMD LEN DATA1H DATA1L CHK

Send message format description

#### Table 2 Description of sending message format

| No. | Name | illustrate | code | Remark |
|-----|------|------------|------|--------|
|-----|------|------------|------|--------|

Email: sales@erdicn.com Fax:+86-28-87897578





| No. | Name  | illustrate               | code                                                                          | Remark |
|-----|-------|--------------------------|-------------------------------------------------------------------------------|--------|
| 1   | STX0  | Message start flag       | 55(H)                                                                         |        |
| 2   | CMD   | Command word             | See table 3                                                                   |        |
| 3   | LEN   | Data length              | The number of all bytes except the start flag, command word, and check value. |        |
| 4   | DATAH | parameter                |                                                                               |        |
| 5   | DATAL |                          |                                                                               |        |
| 6   | СНК   | Exclusive OR (XOR) check | Perform an exclusive OR operation on all bytes except the check byte.         |        |

#### The command is described as follows:

Table 3 Description of commands and data words sent by the main control to the distance measuring machine

| No. | command<br>word | Functions                                             | Data byte                    | Remarks                                           | Length  | sample code<br>(computing)          |
|-----|-----------------|-------------------------------------------------------|------------------------------|---------------------------------------------------|---------|-------------------------------------|
| 1   | 0x00            | Standby<br>(continuous<br>ranging stop)               | DATAH=00 (H)<br>DATAL=00 (H) | Distance<br>measuring<br>machine stops<br>working | 6 bytes | 55 00 02 00 00 57                   |
| 2   | 0x01            | Single ranging                                        | DATAH=00 (H)<br>DATAL=00 (H) |                                                   | 6 Bytes | 55 01 02 00 00 56                   |
| 3   | 0x02            | Continuous ranging                                    | DATAH=XX (H) DATAL=YY (H)    | DATA expresses the ranging period in ms.          | 6 bytes | 55 02 02 03 E8 BE<br>(1Hz ranging)  |
| 4   | 0x03            | Self-test                                             | DATAH=00 (H)<br>DATAL=00 (H) |                                                   | 6 Bytes | 55 03 02 00 00 54                   |
| 5   | 0x04            | Distance selection<br>and nearest<br>distance setting | DATAH=XX (H) DATAL=YY (H)    | DATA expresses the blind zone value, unit 1m      | 6 Bytes | 55 04 02 00 64 37<br>(100m closest) |
| 6   | 0x06            | Cumulative<br>number of light<br>out query            | DATAH=00 (H)<br>DATAL=00 (H) | Cumulative<br>number of light<br>out query        | 6 bytes | 55 06 02 00 00 51                   |
| 7   | 0x11            | APD power on                                          | DATAH=00 (H)<br>DATAL=00 (H) |                                                   | 6 bytes | 55 11 02 00 00 46                   |
| 8   | 0x12            | APD power off                                         | DATAH=00 (H)<br>DATAL=00 (H) |                                                   | 6 bytes | 55 12 02 00 00 45                   |
| 9   | 0xEB            | Number Query                                          | DATAH=00 (H) DATAL=00 (H)    |                                                   | 6 bytes | 55 EB 02 00 00 BC                   |

#### • Master receive format

The receive message format is as follows:

| STX0 | CMD | LEN | DATAn | DATA0 | CHK |
|------|-----|-----|-------|-------|-----|
|------|-----|-----|-------|-------|-----|



Table 4 Description of receive message format

| No. | Name   | Description          | Code                                                              | Remarks |
|-----|--------|----------------------|-------------------------------------------------------------------|---------|
| 1   | STX0   | Message start flag 1 | 55(H)                                                             |         |
| 2   | CMD_JG | Data command word    | See Table 5                                                       |         |
| 3   | LEN    | Data length          | Number of all bytes except start flag, command word, and checksum |         |
| 4   | Dn     | Demonstra            | See Table 5                                                       |         |
| 5   | D0     | Parameter            |                                                                   |         |
| 6   | CHK    | Checksum             | All bytes except parity byte                                      |         |

### Master receive status description:

Table 5 Description of the data word sent from the rangefinder to the master control

| No. | command<br>word | Functions                                             | Data byte                     | Remarks                                                                                                                                                                                                                                    | Total<br>length |
|-----|-----------------|-------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1   | 0x00            | Standby (continuous ranging stop)                     | D1=00 (H)<br>D0=00 (H)        |                                                                                                                                                                                                                                            | 6 bytes         |
| 2   | 0x03            | Self-test                                             | D7 ~D0                        | D0: char type, indicates APD temperature in degrees Celsius; D1: APD high-voltage value, unit V; D3-D2: blind value, unit 1m D5-D4: -5V voltage, unit 0.01V. D7-D6:+5V voltage, unit 0.01V                                                 | 12 bytes        |
| 3   | 0x04            | Setting of the nearest distance to the opt-in, unit m | D1 D0                         | DATA expresses the closest distance value in 1m; First high then low                                                                                                                                                                       | 6 bytes         |
| 4   | 0x06            | Cumulative number of light out query                  | D3~D0                         | DATA expresses the number of times the light is emitted, 4 bytes, the high byte comes first                                                                                                                                                | 8 bytes         |
| 5   | 0x11            | APD power on                                          | DATAH=00 (H)<br>DATAL=00 (H)  | APD with high voltage                                                                                                                                                                                                                      | 6 Bytes         |
| 6   | 0x12            | APD power off                                         | DATAH=00 (H)<br>DATAL=00 (H)  | APD without high voltage                                                                                                                                                                                                                   | 6 Bytes         |
| 7   | 0xED            | Work timeout                                          | 0x00 0x00                     | The laser is in laser protection and cannot measure the distance.                                                                                                                                                                          | 6 bytes         |
| 8   | 0xEE            | Validation error                                      | 0x00 0x00                     |                                                                                                                                                                                                                                            | 6 bytes         |
| 9   | 0XEF            | Serial communication timeout                          | 0x00 0x00                     |                                                                                                                                                                                                                                            | 6 bytes         |
| 10  | 0x01            | Single Distance Measurement                           | D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 | D8-D6 first target distance (unit 0.1m) D5-D3 second target distance (data is 0 when single target) (unit 0.1m) D2-D0 third target distance (data is 0 when single target) (unit 0.1m) 3 target from near to far D9 (bit7-bit0) flag byte: | 14 bytes        |

https://erdicn.com **Tel:** +86-28-81076698 Email: sales@erdicn.com Fax:+86-28-87897578

**ERDI TECH LTD** 



| No. | command<br>word | Functions                       | Data byte                              | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total<br>length |  |
|-----|-----------------|---------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
|     |                 |                                 |                                        | D9 bit 7 indicates main wave; 1: with main wave, 0: without main wave.  D9 bit 6 indicates return wave; 1: with return wave, 0: without return wave  D9 bit 5 indicates the laser status; 1: laser normal, 0: laser failure  D9 bit 4 timeout alarm; 1 normal, 0 timeout  D9 bit 3 invalid, =1  D9 bit 2 indicates APD status; 1: normal, 0: error  D9 bit 1 indicates whether there is a former target; 1: target, 0: no target (the target before the main target is the former target)  D9 bit 0 indicates whether there is an after-target; 1: with target, 0: without target (the target after the main target is the after-target)                                                                                                                                                                                                                                     |                 |  |
| 11  | 0x02            | Continuous distance measurement | D9<br>D8 D7 D6<br>D5 D4 D3<br>D2 D1 D0 | D8-D6 first target distance (unit 0.1m) D5-D3 second target distance (data is 0 when single target) (unit 0.1m) D2-D0 third target distance (data is 0 when single target) (unit 0.1m) 3 target from near to far D9 (bit7-bit0) flag byte: D9 bit 7 indicates main wave; 1: with main wave, 0: without main wave. D9 bit 6 indicates return wave; 1: with return wave, 0: without return wave D9 bit 5 indicates the laser status; 1: laser normal, 0: laser failure D9 bit 4 timeout alarm; 1 normal, 0 timeout D9 bit 3 invalid, =1 D9 bit 2 indicates APD status; 1: normal, 0: error D9 bit 1 indicates whether there is a former target; 1: target, 0: no target (the target before the main target is the former target) D9 bit 0 indicates whether there is an after-target; 1: with target, 0: without target (the target after the main target is the after-target) | 14 bytes        |  |
| 14  | 0xEB            | Number Search                   | D16 D0                                 | D15 D12 Complete model D11 D10 Product number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 bytes        |  |

https://erdicn.com **Tel:** +86-28-81076698 Email: sales@erdicn.com Fax:+86-28-87897578 **ERDI TECH LTD** 



| No. | command<br>word | Functions | Data byte | Remarks                                 | Total<br>length |
|-----|-----------------|-----------|-----------|-----------------------------------------|-----------------|
|     |                 |           |           | D9 D6 Software version D5 D4 APD number |                 |
|     |                 |           |           | D3 D2 Laser number D1 D0 FPGA version   |                 |

Remarks: ① Undefined data byte/bit, default is 0;

# INSTRUCTIONS FOR USE

1. In order to enable the operators to safely and correctly use various functions of the LRF0105C miniature laser rangefinder product, this operation and maintenance manual provides instructions on its operation and maintenance. It is applicable to the operators and maintenance personnel of this product.

The LRF0105C miniature laser rangefinder (hereinafter referred to as the laser rangefinder) is a precision optoelectronic product that emits laser towards the measured target and calculates the distance information based on the laser flight time. This laser rangefinder achieves communication through the Uart (TTL\_3.3V) communication interface, and is characterized by outstanding performance and simple operation. The laser of this rangefinder is prohibited from direct exposure to human eyes.

#### 2. Recommendations for Optical Window Selection and Coating

#### 2.1 Material Recommendations

The optical glass H-K9L is recommended as the material for the optical window. H-K9L is the most common colorless optical glass, suitable for the laser range of 300nm to 2100nm. It has a high cost-performance ratio and superior physical properties.

#### 2.2 Processing Recommendations

The wedge angle tolerance of the optical window should be as small as possible. It is recommended that the wedge angle tolerance  $\leq 3'$  (tolerance grade  $\leq$  level 7);

The optical surface of the optical window should be as smooth as possible. It is recommended that the arithmetic average deviation of the profile (Ra) is 0.012.

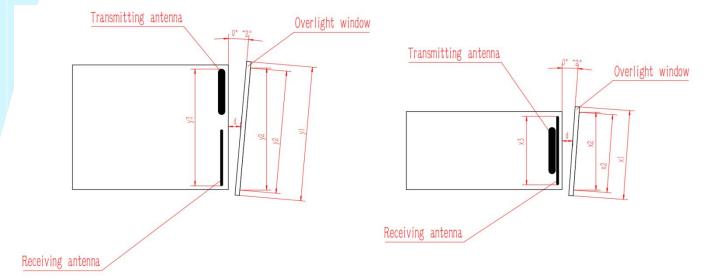
#### 2.3 Coating Recommendations

For the optical window of the 1535nm laser rangefinder, it is recommended to coat an anti-reflective film in the range of 1525nm to 1545nm, with a transmittance of  $\geq 99\%$ .

According to the specific usage environment of the product, other protective films such as a hydrophobic film or a hard film can be additionally selected for coating on the outer surface of the optical window. For the remaining indicators, refer to MIL-STD-810G, and the transmittance should be  $\geq 97\%$ .

#### 2.4 Recommendations for the Shape and Use of the Optical Window

The effective aperture of the optical window depends on different products. Its external dimension should ensure that the effective aperture of the optical window - the outer diameter of the optical window  $\geq 2$ mm, and the outer diameter of the rangefinder antenna - the projected dimension of the effective aperture of the


https://erdicn.com **Tel:** +86-28-81076698 **Email :** sales@erdicn.com **Fax:**+86-28-87897578





optical window  $\geq 1.5$ mm. The schematic diagram is shown as follows. Since the optical window has a certain absorption of the laser, it is recommended that the thickness of the optical window itself be controlled within 2 to 4mm according to the external dimension.

Since the optical window has a high transmittance, it is recommended that the axial deviation between the emitting optical axis and the normal of the optical window be controlled within 0° to 2°. The schematic diagram of the position of the optical window and the two lens barrels is shown as follows. At the same time, the air gap between the optical window and the rangefinder should be as small as possible. Figure 4 shows the schematic diagrams of the placement of the optical window in two ways.



The effective aperture of the optical window  $y_2$  - the outer diameter of the optical window  $y_1\!\!>\!\!2mm$ 

The outer diameter of the rangefinder antennay<sub>3</sub>-the projection size of the effective aperture of the optical window  $y_2$ , >1.5mm

The air gap d between the optical window and the rangefinder should be as small as possible

The effective aperture of the optical window  $x_2$  - the outer diameter of the optical window  $x_1>2mm$ 

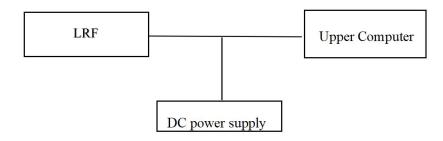
The outer diameter of the rangefinder antenna  $x_3$ -the projection size of the effective aperture of the optical window  $x_2$ , >1.5mm

The air gap d between the optical window and the rangefinder should be as small as possible

### Schematic diagrams of two ways of the external dimensions and placement of the optical window

3. Operation In order for you to fully understand all the functions of this system and correctly master the installation, operation and maintenance methods, please read the content of this chapter carefully before installing and using this system.

#### 3.1 Power-on Operation


#### 3.1.1 Before Power-on

Connect the laser rangefinder, the debugging cable, the DC power supply and the host computer as shown in the figure.

**Email:** sales@erdicn.com **Fax:**+86-28-87897578







Schematic Diagram of the Connection

#### 3.1.2 Power-on

Power-on operation: Connect the power supply.

#### 3.2 Power-off Operation

#### 3.2.1 Before Power-off

Before powering off, it should be confirmed that the working processes and tasks of each product are in the ended state, and the program is exited.

#### 3.2.2 Power-off

Power-off steps: Disconnect the power supply.

#### 3.3 Operation

#### 3.3.1 Ranging Mode

Operation method of the ranging mode:

- a) Send the "Single Ranging" command to the laser rangefinder. The laser rangefinder will perform single ranging and report the ranging status and the distance value.
- b) Send the "1Hz Ranging" command to the laser rangefinder. The laser rangefinder will perform ranging once per second and report the ranging status and the distance value.
- c) Send the "Stop Ranging" command to stop ranging.
- d) Send the "5Hz Ranging" command to the laser rangefinder. The laser rangefinder will perform ranging five times per second and report the ranging status and the distance value.
- e) Send the "Stop Ranging" command to stop ranging.
- f) Send the "10Hz Ranging" command to the laser rangefinder. The laser rangefinder will perform ranging ten times per second and report the ranging status and the distance value.
- g) Send the "Stop Ranging" command to stop ranging.

#### 3.3.2 Distance Gating Setting

Distance gating means setting a section of gating distance (represented in hexadecimal) within the ranging capability range. The target distance information lower than the gating value will not be sent back, and the ranging value higher than the gating value within the measurement range is the effective ranging value.

If setting is required, the operation method is as follows:

a) Send the "Gating Value Setting" command to the laser rangefinder.

Send the "Ranging" command to the laser rangefinder. The laser rangefinder will perform ranging, determine whether the sent-back distance value is greater than the distance gating value, and then report the ranging result

c) Send the "Stop Ranging" command to stop the ranging operation. If the distance gating function is not

https://erdicn.com **Tel:** +86-28-81076698 Email: sales@erdicn.com Fax:+86-28-87897578





needed, the initial settings need to be manually restored (set the gating value to 0).

#### 3.3.3 Self-check Mode

The operation method of the self-check:

a) Send the "Self-check Inquiry" instruction to the laser rangefinder. The laser rangefinder starts to conduct a self-check and sends back information such as the current ambient temperature and working status.

#### 4. Inspection and Maintenance

#### 4.1 General Inspection

Visual inspection and power-on inspection should be carried out when the product is used for the first time and after the resource module is replaced. For products in normal use, only power-on inspection is required before use.

#### 4.1.1 Visual Inspection

The steps of visual inspection are as follows:

- a) Check whether the appearance of the product is normal;
- b) Check if there is any error in the cable connection, and the connection should be firm.

#### 4.1.2 Power-on Inspection

The steps of power-on inspection are as follows:

- a) Complete the power-on operation according to the steps in 3.1;
- b) Start the self-test module;
- c) After the inspection is completed, complete the power-off operation according to the steps in 3.2.

#### 4.2 Regular Maintenance

The laser rangefinder does not need maintenance under normal working conditions. Maintenance is required if it is stored in a dust-free environment for more than one year. The maintenance content includes:

#### 4.2.1 General Inspection

Conduct a general inspection of the product when it is not energized. The steps are as follows:

- a) All marks and numbers on the product and the test cable plug (socket) should be correct and clear;
- b) All kinds of screws on the panel should be tightened;
- c) It should be ensured that there are no attachments such as light spots, pockmarks, water stains, mold, fingerprints, dust particles, etc. and cracks that hinder normal observation on the optical glass of the product as seen visually.

#### 4.2.2 Power-on Inspection

Conduct a comprehensive inspection and maintenance of the laser rangefinder when it is powered on. The content includes:

- a) Turn on the power of the product in sequence;
- b) Complete the power-on operation according to the steps in 3.1;
- c) Start the product self-test module and complete the product self-test;
- d) Complete the power-off operation according to the steps in 3.2.

#### 5. Analysis of Fault Symptoms and Troubleshooting Methods

https://erdicn.com **Tel:** +86-28-81076698 **Email :** sales@erdicn.com **Fax:**+86-28-87897578

**ERDITECH LTD** 



The laser rangefinder is a precision product. When a fault occurs, the entire device needs to be returned to the factory for fault analysis, location, and repair. Self-repair is not allowed.

Common fault symptoms and troubleshooting methods are shown in the following table.

Common Fault Symptoms and Troubleshooting Methods

| Fault Symptoms                             | Possible Reasons                                                                                                                                               | Inspection Method                                                                                                       | Measures for<br>Troubleshooting                                                                                                                                                                         |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The product cannot be powered on normally. | <ul><li>a) Faults in the power supply and connection cables.</li><li>b) Circuit faults.</li></ul>                                                              | Check the power supply and the connection cable.                                                                        | <ul><li>a) Replace the power supply or the connection cable.</li><li>b) b) In case of a circuit fault, contact the manufacturer for assistance in solving the problem.</li></ul>                        |
| Cannot return communication information.   | <ul><li>a) Fault of the connection</li><li>cable</li><li>b) Abnormal power supply</li><li>c) c) Communication fault of</li><li>the laser rangefinder</li></ul> | <ul><li>a) Check whether the connection cable is normal.</li><li>b) Check whether the power supply is normal.</li></ul> | <ul><li>a) Replace the connection</li><li>cable and the power supply.</li><li>b) For communication</li><li>problems, contact the</li><li>manufacturer for assistance</li><li>in solving them.</li></ul> |

#### 6. Requirements for Packaging, Transportation and Storage

#### 6.1 Packaging

For the products that have been unsealed and need to be restocked, they should be packaged according to the original packaging. When the products need to be returned to the factory, the original packaging should be used as much as possible. When other forms of packaging are used, it should not cause a decrease in product performance or damage to the products.

#### 6.2 Transportation

The products that have been repacked can be transported by means of automobiles, trains, airplanes, ships, etc. During transportation, the packaged items should be fixed on the means of transportation to avoid phenomena such as impact, rough handling, and being exposed to rain and snow. For the road transportation and railway transportation environments, refer to MIL-STD-810G.

#### 6.3 Storage

The repacked products shall not be stored in the open air in the wild. They should be stored in a warehouse with a storage temperature of  $0^{\circ}$ C to  $+30^{\circ}$ C, a relative humidity not exceeding 80%, free from the erosion of corrosive substances, strong mechanical vibration and impact, and strong magnetic fields.

# 7

## **SAFETY PRECAUTIONS**

In order to use this product safely, please read this instruction manual carefully before operating the product.

- This laser rangefinder is a precision optical and mechanical product. Operating it in violation of the regulations may lead to dangerous laser injury. Do not open or adjust any part of the laser rangefinder, and do not attempt to repair or adjust the performance of the laser rangefinder by yourself.
- Pay attention to electrostatic protection: The electronic components of the laser rangefinder are sensitive

https://erdicn.com **Tel:** +86-28-81076698 **Email :** sales@erdicn.com **Fax:**+86-28-87897578





to electrostatic discharge. Do not touch any electronic devices without protective measures.

- Only turn on the power of the laser rangefinder for operation within the specified voltage and power range.
- It is prohibited to touch the optical lenses with fingers or hard objects (to prevent oil contamination or scratching of the lenses).
- It is prohibited to measure high-reflectivity targets at too close a distance (to prevent damage to core components of the detector, etc.).
- It is prohibited to store the laser rangefinder under non-specified conditions (such as a highly polluted environment, exceeding the storage temperature range, etc.).
- It is prohibited for the laser rangefinder to be subjected to strong mechanical impacts (vibration, impact, dropping, etc.).















